Does erasure coding have a role to play in my data center?
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Abstract is written over the network onto storage.

So when is it appropriate to use erasure coding in prac-
Today replication has become tde factostandard for tice? There are more complex tradeoffs involved than the
storing data within and across data centers that procesbove simple ones. The gains of erasure coding tend to
data-intensive workloads. Erasure coding (a form ofbe a fraction of its space saving depending on the ratio
software RAID), although heavily researched and theo-of storage cost to total system cost for modern data cen-
retically more space efficient than replication, has com-ers. The diversity of workloads also affects the benefits
plex tradeoffs which are not well-understood by practi-of erasure codingE.g., the network savings of erasure
tioners. Today’s data centers have diverse foregroundoding are clear when the workload is write-dominated.
and background data-intensive workloads, and gettind®ISC workloads, composed of client-facing foreground
these tradeoffs right is becoming increasingly importantand analytical background workloads, are both read and
Through a series of realistic data center deployment scewrite dominated, however. Erasure coding pays prices
narios and workload characteristics, coupled with the imor its savings too. It causes slower recovery from fail-
plementation of a prototype Hadoop library with erasureures across data centers. It is also perceived as “com-
codec functionalities, we revisit traditional metricsipe plex” by developers in industry, though this factor has
formance and dollar cost), present new tradeoffs (powenot been systematically evaluated.
proportionality and complexity) and make recommenda:

. T . ‘With a goal of encouraging discussions on the mer-
tions on directions worth researching.

its of erasure coding for DISC workloads, this paper
makes several contributions. We present realistic sys-
tem deployment scenarios (e.g., mega data centers and
1 Introduction container-based data centers) and workload characteris-
tics. We analyze several real foreground workloads from
Today's modern data centers have “foreground” userypline services, as well as background analytical work-
facing workloads and “background” data intensive an-jo5qs. For the latter, we have implemented a prototype
alytical jobs that dig into the massive datasets t0 an{jaqoop library with erasure codec functionalities, and

swer customer’s inquiries or discover valuable insights his paper reports on tradeoffs involved, including code
These data-intensive jobs often whgpping code to data  gjze and state dependency [5] complexity metrics.
frameworks, such as MapReduce [7] and Dryad [15].

We borrow the term Data-Intensive Scalable Comput-

ing (DISC [3]) workloads to describe the combination . .

of user-facing and analytical workloads. 2 Environments and metrics

Unlike traditional enterprise environments, DISC sys-
dems and many data centers today leverage commodity
data centers today usé-way data replication. An al- components, which are typically distributed and less reli-
ternative, erasure coding, has always been available arfP!€ than customized hardware. Common fault tolerance
much research has gone into it [1, 13, 17, 18, 19, 20, 22'solutlons adopted by commercial storage servers, such as

24, 25]. Erasure coding provides potential storage an@ardware RAID_ [17] or storage—ar_ea networks_ (SANSs),
network savings to replication. For example,iarof-n are often considered too expensive and not incremen-

erasure coding scheme encodes unit data infoag- tally scalable. DISC environments provide reliability and
mentsof size L such that anyn of them reconstructs availability mainly through software-based redundancy.
the original data. While 3-way replication ahebf-5era- T OF €xample, replication is used by the Google File Sys-
sure coding both tolerate 2 faults, the former requires €™ [9] and Hadoop Distributed File System [14].
storage consumption, while the latter only requiressx . Storage is a key component in DISC environments, how-
g p y req g Y p
So, while tolerating the same number of faults, less dat&ver, it is not the only one. Storage is often co-located
g y g

To provide better reliability and availability, a certain
level of data redundancy is often needed. Many of th
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with computation and networking resources. Analytical # servers| Costlyear| Storage cost
jobs have ashipping code to dataequirement for effi- Mega DC [12]| 54k $81M 14-23-41%
ciency. It must be possible to start analytical processes Condo [6] 48 $71K 20-34-61%
on the same servers the data resides. FAWN [23] 1 $383 30%

An implementation in Hadoop: Erasure coding has Table 1: Storage cost in several sample systems. For
workload-independent/dependent tradeoffs. To evaluatilega DC and Condo, a 15 year amortization cost for
them we have extended HDFS with erasure codifg. building and 3 year amortization cost for server is as-
Erasure coding is done at the block granularity (64MBSUMed. According to [6], a server in Condo or Mega DC
in HDFS), meaning that an HDFS client does not erasur&0Sts $3000. We use three disk cost points to estimate
code within a single block, but waits to receiveblocks ~ the storage cost: 30%, 50% and 90% of the server cost

before calculating and writing — m parity blocks. The ~ ($900, $1500, $2700 per server spent on disks).

m original data blocks are still sent out_ as soon as they14_25%) of the total cost for the Mega DC and (12-20-
are ready, but a copy of each block is kept in mem-

. ! ??7%) for the Condo-based one respectively. For a cluster
ory to calculate parity data. We assume an environment_ 1 o EAWN nodes. the savings are around 18%
with battery-backed memory to handle failures when ' '

blocks are being accumulated. Our system falls back técost during large-scale recovery A main penalty paid
replication when it can not accumulateblocks within by erasure coding is decreased performance during re-
30 seconds. We use theduchy_good” algorithmin the ~ covery (when compared to replication). This might be
Jerasure library [18] for erasure calculations. a serious concern when erasure coding is considered as

. Lo ) . the redundancy mechanism across data centers, or across
Our implementation is the first one in Hadoop that per-_ .~ . . o )
availability domains within a large data center. Let’s con-

forms erasure coding online, on the critical path. AnotherSioler a power outage (€.g., the one that took down parts
recent implementation, DiskReduce [8], first performs P ge (€.g., b

replication, then erasure codes data in the backgrouné)f Amazon's EC2 recently [2]) that fails one availability

In contrast, our system erasure codes data chunks whednomam' For both replication and erasure coding, data

: reconstruction is needed to restore the redundancy level.
they are created, therefore also reducing the network a . o . ) .
. . hereas with replication clients can simply switch to us-
disk bandwidth usage.

_ . _ ~ing another availability domain, with erasure codimg
Metrics: In evaluating the impact of erasure coding, domains might need to be contacted for every read.
we discuss both traditional and new metrics. The for- .

What about complexity?. The number one response

mer include performance, recovery time and infrastruc-, . .
. . .. from developers when asked about using erasure coding
ture costs (in $). To these metrics we add a complexit

¥s that “it is too complex”. Quantifying complexity is

and an energy metric. In evaluating complexity we con-_ .~ . . 7
sider both the code size and the NetComplex metric in_subjec:tlve. We provide two quantitative arguments here.

troduced by Churet al. [5]. The energy metric has two The first focuses on the notion of “state dependencies”,

L ) as first defined by Chuet al. [5]. This metric captures
components. The first is regarding the amount of €NeT9¥% e number of nodes with state that must be contacted
consumed per task or per GB of stored data. The second : o
) . : efore an algorithm can complete. Intuitively, the larger
is a function that relates energy consumption to the Ioar(%‘)he number of such nodes, the more things can go wrong
seen by the system. In particular, we assume the systeg}a”ing progress and making debugging harder '
is employing “offloading” of requests as described in our '
previous work [16] to enable power proportionality. When data is written to the system, with either scheme,

each hosting server is receiving a “single input, 1-hop
unicast” from the data source. This scenario has a com-
3 Workload-independent tradeoffs p_Iexity o_f 1 + t, wheret refers to the complexity asso-
ciated with the network path relaying the message, and
Dollar savings: Table 1 shows the fraction of storage js solely determined by the network topology of the sys-
cost fora mega-data center (Mega DC [12]) and a Condorem, During data recovery (and reads), however, erasure
based machine room [6]. The cost of a “wimpy” server coding has higher complexity because more servers need
(FAWN [23]) is shown as a reference. A main takeawaytg pe involved. Identical to the “single input;of-m
from this table is that the cost of raw storage space igaths” and “single inputi-of-m paths” scenarios ([5])
relatively small, unless the whole server is a storage nodgaspectively, the complexity of recoverylis+ m - ¢ un-
(i.e., 50-90% of the server cost is storage-related). Usingjer,-of-n erasure coding, and+ ¢ under replication.
a 3-of-5 erasure coding instead of the (pervasively used)l_ . , i
3-way replication is expected to save in the range of (8.4- he se_cond metric Is ba;ed_on code size. In_ our imple-
mentation of erasure coding in Hadoep], 800 lines of

1Available at http://research.csc.ncsu.edu/palm/hadmoiptm Java code is added or modified, out of a total-a$3, 500




lines in HDFS.~ 1,500 lines are on the HDFS client Workload R:W ratio | TB
(originally ~ 2,800 lines), while the other 300 lines Hotmail 0.85 66
are for bookkeeping of parity data. In addition, the Jera- MSN-DB 1.99 0.4
sure package is used for the calculation of parity data, Blob-DB 1.67 0.26
involving another 1,700 lines of C code (the entire li- Analytical job - sort 0.67 N/A
brary contains- 7, 500 lines). We want to stress that this Analytical job - wordcount | 5.04 N/A
code can be written once and packaged in a library, andis  Analytical job - CloudBurst| 0.74 N/A

unlikely to require continuous maintenance (most func- ) )
tions perform well-studied mathematical calculations). 1able 3: Read:write ratio for foreground and background
workloads, along with data size in TBs, identified using

Summary:  Table 2 depicts the main workload- ¢ |argest logical-block number (LBN) seen in the trace.
independent tradeoffs when erasure coding is used With e pigher the R:W ratio, the smaller the benefits of us-
a fixedn. The size of the arrows needs to be normal-ing erasure coding.

ized by the fraction of storage subsystem cost, latency

and complexity to the overall system. matching conditions. A typicalloudBurstrun produces

ma | storage cosp_ latency _complexity( only a small amount of output data,_ but intermediate
data size could be much larger than input. The overall
read:write ratio is 0.74.

4 Workload-dependent tradeoffs Table 3 shows that our servers are provisioned as much
for reads as they are for writes. Thus, the network sav-

_Reads_ and Wr||(t|es dCIearIy erasure go_dlng fa\_/ors write- ings from using erasure coding need to be appropriately
intensive workloads as mentioned in Section 2. Ta'scaled by the R:W ratio.

ble 3 shows properties of IO traces (underneath the buffer o o
cache) for several foreground applications running at Mi-Network topology and replication policies The net-
crosoft's data centers. It also shows three background avork topology and replication policies matter when ex-

alytical jobs. We briefly describe these workloads below.@2mining the benefits of erasure coding. Consider an en-

i h i Kload ining both d vironment where each node is both a client and a storage
Hotmail: 48-hour email workload, containing both data go ey | that case, a node producing or collecting a

and metadata accesses. Email contents might be conti, i of data might be one of its hosting nodes, mean-

uously mined for spam detection and ad placement. ing thatm-of-n erasure coding needs to seliggll chunks
BLOB-DB (Windows Live Blob Metadata Serverhese to remote nodes for each produced chunk, whilevay
metadata lookup servers hold user account mapping®plication send®v — 1. In this case3-of-5 erasure cod-
for various blob storage services such as online photosng, for example, would us&3% less network bandwidth
videos, social networking, etc., over a period of 24 hoursthan 3-way replication rather thai3% as in a topology

MSN-DB (MSN Content Aggregation Database Server):Where storage clients and servers run on disjoint nodes.
This 24-hour trace is taken from a content publishingData replication policies also have an impact in deter-
system for an online portal front page and is updated bymining the network bottleneck. For example, if the client
mainly editorial tools and feed management systems vigendsN replicas toN nodes, it is likely that the client’s
web services. Most of the stored data is unstructured ilNIC will be a bottleneck (e.g., a 1Gbps NIC will only
nature, consisting of either raw content or links to con-have a “goodput” of close to 30MB/s for 3-way replica-
tent on other partner sites. tion and close to 60MB/s for thg-of-5 scheme). But,
when we used Hadoop’s chain replication policy for the
analytical jobs, the client NIC was not a bottleneck any-
more (however, switches could become a bottleneck de-
pending on network activity from other clients).

Table 2: Main workload-independent tradeoffs.

Analytical jobs: We run three analytical jobs under
Hadoop, including two typical benchmarks on synthetic
data 6ort and wordcounj and one real bioinformatics
application CloudBurst[21]). Thesortjob has almost
the same amount of input, intermediate and output dataOf course, more data is transmitted if the input, inter-
Assuming the input data is (already) written to the sys-mediate, and output files of an analytical job are pro-
tem by foreground jobs, the read:write ratio for just thetected with replication rather than erasure coding when
processing stages is 0.67. Therdcountjob, which  they are generated. However, the exact end-to-end ef-
counts the occurrence of each word in a document, hafects on throughput and latency might not simply scale
much less output data than input and intermediate datdinearly with amount of data sent. For concreteness, to
and the read:write ratio is 5.0€loudBurstis a DNA se-  stage a 6GB file into an HDFS of 8 data servers, it took
guencing application, which returns a set of entries from246 seconds with no redundancy, 393 seconds with 3-
a reference genome dataset according to user specifiaday replication, and 389 seconds with 3-of-5 erasure
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coding. The replication policy, network topology, and with performance and the same tradeoffs as discussed
interactions with other client’s data all influence end-to-above apply. To verify this, we measured the entire job’s
end performance. energy consumption on 8 nodes using power meters at-
tached to each machine. During the run time of the three
gnalytical jobs we have observed that different encoding
schemes (including replication) have similar Watt levels.
Their total energy consumptions are therefore approxi-
mately proportional to the execution time.

A closer look at analytical jobs We examine the im-
pact of encoding schemes in different phases of the thre
analytical jobs mentioned in Section 4. Thkert and
wordcountjobs process 6GB of data whiléloudBurst
uses a 4GB input reference file. Our testbed is a clus
ter of 8 machines interconnected with 1Gbps EthernetWhen the workload intensity decreases (many fore-
The execution times of the three jobs with different en-ground workloads have diurnal patterns) we have advo-
coding schemes are shown in Figure 4, decomposed intoated turning off servers [16] for better power propor-
map shuffleandreducephases. All experiments are per- tionality. The number of “gears” for a general-of-n
formed 3 times, with negligible variance. scheme isn — m + 1. For example, 3-way replication
has three gears (with 1, 2, or all 3 servers OBpf-5

yas three gears too (with 3, 4 and 5 servers ON). The
mechanism for turning off servers has been discussed
previously [16] and is beyond the scope of this paper. It

mainly partitions the intermediate data on mappers and® INteresting to note that, once the data center has been

merges the received partitions into sorted order befor&OVer-)provisioned for replication, more machines can be

reducers run. The performance of this stage is someldrned OFF than when erasure-coding is used.

what degraded by the bandwidth consumption of repli-Summary: The main workload-dependent tradeoffs,

cating intermediate data. Overdikof-7 erasure coding shown in Table 4, are complex. Workload characteristics

reduces 35% of run time over 3-way replication, while (e.g., read:write ratio, access size, time spent in differe

3-of-5 performs slightly worse thak-of-7. of MapReduce stages, etc.), network topology, and poli-

I hewordcounio, owever, e output volume s ess 6195 3l MY 10 gauge te wins o erasure cong,
1 . !

tthShQ%rr?;lllgf?;;p:\cst c{;\nrtehseu g;/:rr;(lzlos(;rrwf%rsr:]:gﬁge's[):;fae\/fto be normalized by the fraction of requests that benefit

(read:write ratio). ?” stands for “it depends”.

ence in run time among all schemes is less than 5%.

Sorts mapandreducephases are write-intensive-of-7
erasure coding has an improvement of 51% over 3-wa
replication inreducerun time, the most significant win
of erasure coding out of all phases. Téleufflephase

n{ | net.bw.{ write latency/thrpt? gear$

Similar towordcount CloudBurstalso outputs much less
mq | — read latency gears)

data than input. However, the amount of intermediate
data is relatively large. Therefore, erasure coding wins
over replication by saving the network and disk band-
width in mapandshufflestages, the latter of which dom-

inates the total run time. The overall improvement of
5-of-7 encoding over 3-way replication is 299%8-0f-5 5§ Related work
achieves a similar enhancement.

Table 4: Main workload-dependent tradeoffs.

The inspiration for using erasure coding to archive data
One may suspect that erasure coding hurts data localityomes from the classic work on RAID [17] and later
for MapReduce tasks — for each data chunk, having mulautoRAID [25]. This latter work valued savings from
tiple distributed replicas reduces remote accesses witBuch codes because storage space is a significant fraction
Hadoop’s locality-aware task scheduling. However, weof the cost of a disk array. This holds true for a SAN
have found that even without any replication, the greatoo, and more generally for a system whose only role
majority of blocks are accessed locally. Compared withis to storage data durably [4]. Our work is orthogonal
no replication, 2-way replication improves the percent-to the above. We examine tradeoffs when using erasure
age of local accesses from 78% to 91%0rf), from  codes for non-archival workloads in data center environ-
88% to 95% (ordcoun}, and from 82% to 93%Cloud-  ments, where computation, storage and networking are
Bursi). 3-way replication hardly provides any additional co-located (i.e., no disk arrays or SANs). In such en-
improvement. Therefore, the negative impact of employ-~vironments, commodity servers are being used. Unlike
ing erasure coding on data locality is quite limited. traditional enterprise, where expensive RAID enclosures

Power efficiency and proportionality: When the and SCSI disks m!ght be pervasive [4], in our environ-
servers are fully utilized, the amount of Joules/task will Ments the trend points to the FAWN [23] approach (even-

clearly depend on the properties of the task (e.g., writefually).
vs. read-dominated). This metric is largely correlatedThe tradeoffs of erasure coding and replication have been
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Figure 1: Execution time of analytical jobs

studied, but mostly from the performance perspectiveworkload.

For example, the performance tradeoffs are known [18This research is sponsored by Microsoft Research Cam-
22, 24] and so is recovery time [17, 19, 24, 25]. We gobridge, together with NSF grants CNS-0546301 and
beyond single metric evaluations and provide a higherCNS-0915861. In addition, the work is supported by

level discussion based on total system cost (hardwar%'%ﬂlsfng Ma’s joint appointment between NCSU and

design complexity, and energy consumption) for the new
paradigm of data-intensive services.

The mechanisms for building distributed systems that usék€ferences

erasure coding have been studied in academia [1, 8, 13}1]
and industry [20]. Work to make erasure coding more
power efficient is ongoing [11]. Our understanding of
erasure codes has benefited from these approaches.

(2]

6 Conclusions and directions &

This paper aims to give a comprehensive overview of
virtues of erasure coding vs. replication for modern data
centers and encourage discussions around the topic. Oug;
analysis and experimental results show that the storage
cost advantage of erasure coding over replication rangess)
from 8.4% to 37%, depending on the data center setup.
Its performance advantage is highly workload-dependent[7]
and varies from<5% to >50%, to which the energy ad-
vantage is highly correlated. Depending on the system|8]
and workload scale, such gains may or may not justify
the higher data recovery cost and software complexity.
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